
Overview
In this lesson, students use variables and conditionals to
create a Tug O’ War game on the micro: bit using Python.

Objectives
•	 Explain where for loops happen in real world situations
•	 Implement for and while loops into a program	
•	 Program the micro:bit® to create 2-Player tug-o-war

game

Materials
•	 micro:bit and micro-USB cord
•	 Computer with access to the internet

Approx. Time Required
1-2 hours

Micro:bit Python Programming
Tug O’ War

Cyber Connections
•	Programming – Students will
program in Python.

•	Hardware and Software – Stu-
dents will utilize small electron-
ics and learn how a computer is
programmed while using micro-
controllers.

This content is based upon work supported by the US Department of Homeland Security's Cybersecurity & Infrastructure Security Agen-
cy under the Cybersecurity Education Training and Assistance Program (CETAP).

Coding
Fundamentals

2Copyright © 2021 Cyber Innovation Center
All Rights Reserved. Not for Distribution.

Tug O’ War
•	 This lesson will give students a tool just as powerful and useful as the

while loop seen in previous lessons: the for loop. A for loop is very
similar to the while loop in nature, as they are both tools that allow sec-
tions of a program to be looped or repeated over and over again. The key
difference, however, is that a for loop is used to repeat a block of code a
set or exact amount of times, specified by the programmer. A while loop
on the other hand, loops until a certain condition is met. Direct students
to the worksheet to see examples and practice using while and for
loops.

•	 In Python, a for loop takes the following format:

	 for i in range(x,y,z):
		 #code to repeat here

Where “i” is the variable name for the counter that counts up until
the loop has been repeated the specified number of times. This can
be named anything, as it is a variable. “I” is the standard naming, but it
can be replaced with “counter” or even “blueberry” and still work.

“x” is the beginning number, or start place for your counter. This is
where the 	 variable above begins counting.

“y” is the final number, or ending place for your counter. This is where
the variable finishes counting and the loop stops repeating.

“z” is the step size. This controls how big of a step the counter takes
each time through the loop. 1 means one step, 2 would count by 2’s,
and -1 would count backwards by one each time through the loop.
This can be set to any number.

•	 Below is an example of a for loop that works as a 10 second timer. It
is also included on the worksheet for the students benefit. Encourage
students to use this code and play around with different numbers to try
to understand what they do. The code includes str() in the display.
show() command. This piece of code is a command that converts num-
bers into something called a “string.” Essentially, this command is used to
convert whatever number is inside its parentheses into an easily printable
format.

3Copyright © 2021 Cyber Innovation Center
All Rights Reserved. Not for Distribution.

•	 There are a few more commands and keywords that students will need
to know to complete the project that goes along with this lesson. The
first should look familiar and will be fairly obvious to grasp: display.
clear(). This command clears the display by turning all LEDs off.

•	 Next is an incredibly useful command for the buttons on the micro:bit®:
button_a.get_presses(). This command works for both buttons,
and its function is to give you the number of presses the button has been
pressed since you last used the command. For example, if you press A 5
times button_a.get_presses() will give you an answer of 5, but will
reset the counter to 0.

•	 Finally, students will need to make use of the command: break. Break
is used to “break out” of or stop a while loop. This is particularly useful
when you don’t know exactly when you want a block of code to stop run-
ning. Its use will become clearer by examining the sample code below.

•	 The project for this lesson is to create a tug-o-war game. The game will
begin with a dot in the middle of the display, and both players having
a button to press. After counting down, players will begin to press the
button as fast as they can to try to pull the dot to their side. If one side
gets 3 or more button presses above the other player, they win. Students
should try to use a for loop to make the game a “best two out of three”
format. Below is a sample code of a working version of this project.

4Copyright © 2021 Cyber Innovation Center
All Rights Reserved. Not for Distribution.

Sample Code

Add your Python code here. E.g.
from microbit import *

for counter in range(0,3,1): #best 2 out of 3
 A_press = 0 #keep track of a presses and set at 0
 B_press = 0 #keep track of b presses and set at 0
 while True:
 sleep(100) #give 0.1 seconds for presses to register
 A_press = A_press + button_a.get_presses() #Add new presses
 B_press = B_press + button_b.get_presses() #Add new presses

 if A_press == B_press: #if they are equal
 display.clear() #clear screen
 display.set_pixel(2,2,9) #dot in the middle

 elif A_press + 1 == B_press: #If B has 1 more press
 display.clear() #clear screen
 display.set_pixel(3,2,9) #Dot 1 closer to B

 elif A_press - 1 == B_press: #If A has 1 more press
 display.clear() #clear screen
 display.set_pixel(1,2,9) #Dot 1 closer to A

 elif A_press + 2 == B_press: #If B has 2 more
 display.clear() #clear screen
 display.set_pixel(4,2,9) #Dot 2 closer to B

 elif A_press - 2 == B_press: #if A has 2 more
 display.clear() #clear screen
 display.set_pixel(0,2,9) #Dot 2 closer to A

 elif A_press >= B_press + 3: #If A has 3 or more extra presses
 display.clear() #clear screen
 display.show(Image.HAPPY) #show smiley face
 sleep(500) #wait half a second
 display.scroll(‘A wins!’) #show A wins
 break #break while loop. Go to next for loop counter

 elif B_press >= A_press + 3: #If B has 3 or more extra presses
 display.clear() #clear screen
 display.show(Image.HAPPY) #show smiley face
 sleep(500) #wait half a second
 display.scroll(‘B wins!’) #show B wins
 break #break while loop, Go to next for loop counter

5Copyright © 2021 Cyber Innovation Center
All Rights Reserved. Not for Distribution.

 else: #incase none of these if statements are met
 display.clear() #clear screen
 display.set_pixel(2,2,9) #put dot in the middle

•	 Things to note about this program as students are trying to create their own:

a)	 The screen will need to be cleared first under any conditional statement, because otherwise
the previous dots will remain on the display.

b)	 Students will need 2 separate variables to keep track of the number of times each button has
been pressed. These will need to be reset to 0 at the beginning of each for loop. The get_
presses() command should be added to these each time through the while loop. These vari-
ables are what students will use to compare to each other for who is winning the tug-o-war.

c)	 Students will need to use break to get out of the while loop and start the next time through of
the for loop.

	

